Exam III - Answers to Review Sheet
MATH 105, Spring 2003

1. Perform the following operations on polynomials, simplifying completely.
 (a) $4x^3 + (3 - 3)x^2 - (-x) + (-1 - 5) = 4x^3 + x - 6$
 (b) $(4x)(2x) + (4x)(5) + (-3)(2x) + (-3)(5) = 8x^2 + 20x - 6x - 15 = 8x^2 + 14x - 15$
 (c) $(x^2 + 4x + 4) - (2x^2 + 6x - x - 3) = -x^2 - x + 7$

2. Find the slope and y-intercept of each of the following lines.
 (a) $y = \frac{1}{3}x - 3$, Slope = $\frac{1}{3}$, intercept = -3.
 (b) $y = \frac{5}{4}x + \frac{15}{4}$, Slope = $\frac{5}{4}$, intercept = $\frac{15}{4}$.
 (c) $y = -\frac{9}{2}x + \frac{5}{2}$, Slope = $-\frac{9}{2}$, intercept = $\frac{5}{2}$.
 (d) $y = \frac{6}{5}x + \frac{13}{5}$, Slope = $\frac{6}{5}$, intercept = $\frac{13}{5}$.

3. Graph the lines below by finding the x- and y-intercepts.

4. Determine the solution type for each of the following systems of linear equations. For those with a unique solution, find that solution using both the addition and the substitution methods.
 (a) Unique Solution: $(1, 7)$.
 (b) No Solution.
 (c) Infinitely Many Solutions.
 (d) Unique Solution: $(-3, 2)$.

5. Set-up and solve the following story problems involving systems of equations.
 (a) Unknowns: x = bags of Hearty Blend, y = bags of Nature’s Best.
 Resources: Rice and Meat.
 Equations: $3x + 5y = 135$
 $6x + 4y = 180$
 Solution: 20 bags Hearty Blend, 15 bags Nature’s Best.

 (b) Unknowns: x = packages mix 1, y = packages mix 2.
 Resources: Nuts and Chocolates.
 Equations: $2x + y = 45$
 $x + 3y = 30$
 Solution: 21 bags of mix 1, 3 of mix 2.
6. Graph the region bounded by the following inequalities.

(a)

(b)

(c)

7. Solve the following linear programming problems.

(a) Unknowns: \(x = \) number of small trucks, \(y = \) number of large trucks

Resources: Plastic and Steel.

Objective Function: Maximize \(60x + 100y \).

Constraints: \(x + 3y \leq 13, \ 2x + y \leq 11, \ x \geq 0, \ y \geq 0 \).

Corners of Feasible Region: \((0,0), (0,4\frac{1}{3}), (4,3), (5\frac{1}{2},0) \).

Solution: 4 small and 3 large trucks produces maximum profit of $540.

(b) Unknowns: \(x = \) tons of standard mix, \(y = \) tons of super mix

Resources: Sand and Limestone

Objective Function: Maximize \(500x + 720y \) Constraints: \(0.3x + 0.35y \leq 160, \ 0.5x + 0.55y \leq 70, \ x \geq 2, \ y \geq 0 \).

Corners of Feasible Region: \((2,125.5), (0,140), (2,0) \)

Solution: 2 tons standard and 129.1 tons super for a maximum profit of $93,952.

8. Which of the following statements is a correct interpretation of the solution to the unbounded minimization/maximization problem shown below?

<table>
<thead>
<tr>
<th>Point</th>
<th>Objective Function Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>13</td>
</tr>
<tr>
<td>Q</td>
<td>-2</td>
</tr>
<tr>
<td>R</td>
<td>-3</td>
</tr>
<tr>
<td>S</td>
<td>5</td>
</tr>
</tbody>
</table>

A. The objective function obtains both a minimum and a maximum.
B. The objective function obtains a minimum but has no maximum.
C. The objective function obtains a maximum but has no minimum.
D. The objective function has neither a minimum nor a maximum.
E. None of the above.

Statement C is correct