MATH 105: Finite Mathematics
1-1: Rectangular Coordinates, Lines

Prof. Jonathan Duncan
Walla Walla College
Winter Quarter, 2006
Outline

1. Rectangular Coordinate System
2. Graphing Lines
3. The Equation of a Line
4. Conclusion
Outline

1. Rectangular Coordinate System
2. Graphing Lines
3. The Equation of a Line
4. Conclusion
The Cartesian Coordinate System, also called the rectangular coordinate system, is shown below.

![Diagram of the Cartesian Coordinate System](image)
Points on the coordinate system are located using an x-coordinate and y-coordinate. They are grouped together into a pair of numbers, (x, y).

Plot each of the following points.

$P = (-3, 5)$

$R = (2, 0)$

$S = (-1, -2)$
Outline

1. Rectangular Coordinate System
2. Graphing Lines
3. The Equation of a Line
4. Conclusion
Graphing a Set of Points

We are particularly interested in graphing lines. A line is just a particular set of points.

The Graph of a Line

The graph of a line is the graph obtained by plotting all points in the set

\[\{(x, y) \mid Ax + By = C\} \]

where \(A\), \(B\), and \(C\) are real numbers.

The General Equation of a Line

The equation \(Ax + By = C\) is called the general equation of a line.

A Point on a Line

A point \((x_1, y_1)\) is on the line \(Ax + By = C\) if \(Ax_1 + By_1 = C\) is a true statement.
Graphing a Set of Points

We are particularly interested in graphing lines. A line is just a particular set of points.

The Graph of a Line

The graph of a line is the graph obtained by plotting all points in the set

\[\{(x, y) \mid Ax + By = C\} \]

where \(A\), \(B\), and \(C\) are real numbers.

The General Equation of a Line

The equation \(Ax + By = C\) is called the general equation of a line.

A Point on a Line

A point \((x_1, y_1)\) is on the line \(Ax + By = C\) if \(Ax_1 + By_1 = C\) is a true statement.
Graphing a Set of Points

We are particularly interested in graphing lines. A line is just a particular set of points.

The Graph of a Line

The graph of a line is the graph obtained by plotting all points in the set

\[\{(x, y) \mid Ax + By = C\} \]

where \(A\), \(B\), and \(C\) are real numbers.

The General Equation of a Line

The equation \(Ax + By = C\) is called the general equation of a line.

A Point on a Line

A point \((x_1, y_1)\) is on the line \(Ax + By = C\) if \(Ax_1 + By_1 = C\) is a true statement.
Graphing a Set of Points

We are particularly interested in graphing lines. A line is just a particular set of points.

The Graph of a Line

The graph of a line is the graph obtained by plotting all points in the set

\[\{(x, y) \mid Ax + By = C\} \]

where \(A\), \(B\), and \(C\) are real numbers.

The General Equation of a Line

The equation \(Ax + By = C\) is called the general equation of a line.

A Point on a Line

A point \((x_1, y_1)\) is on the line \(Ax + By = C\) if \(Ax_1 + By_1 = C\) is a true statement.
Graphing a Line

Since a line is nothing more than a set of points, we can graph it by determining a few of those points and then connecting them.

Graph the line represented by $2x - y = 4$
Graphing a Line

Since a line is nothing more than a set of points, we can graph it by determining a few of those points and then connecting them.

Graph the line represented by $2x - y = 4$
Since a line is nothing more than a set of points, we can graph it by determining a few of those points and then connecting them.

Graph the line represented by $2x - y = 4$

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-4</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
Graphing a line can be made a lot easier by using the following two points:

x-intercept

The x-intercept of a line is the point at which the line crosses the x-axis, where $y = 0$.

y-intercept

The y-intercept of a line is the point at which the line crosses the y-axis, where $x = 0$.
Intercepts of a Line

Graphing a line can be made a lot easier by using the following two points:

x-intercept

The x-intercept of a line is the point at which the line crosses the x-axis, where $y = 0$.

y-intercept

The y-intercept of a line is the point at which the line crosses the y-axis, where $x = 0$.
Intercepts of a Line

Graphing a line can be made a lot easier by using the following two points

x-intercept

The x-intercept of a line is the point at which the line crosses the x-axis, where $y = 0$.

y-intercept

The y-intercept of a line is the point at which the line crosses the y-axis, where $x = 0$.
Graphing a line can be made a lot easier by using the following two points:

x-intercept

The x-intercept of a line is the point at which the line crosses the x-axis, where $y = 0$.

y-intercept

The y-intercept of a line is the point at which the line crosses the y-axis, where $x = 0$.

Finding the x and y intercepts is relatively easy and usually produces the two points needed to graph a line.
Use x- and y-intercepts to graph the line $3x + 5y = 15$.

- y-intercept: 3
- x-intercept: 5
Graphing Lines using Intercepts

Use x- and y-intercepts to graph the line $3x + 5y = 15$.

y-intercept: 3
x-intercept: 5
Graphing Lines using Intercepts

Use x- and y-intercepts to graph the line $3x + 5y = 15$.

y-intercept: 3 \ \ x$-intercept: 5
Graphing Lines using Intercepts

Graphing

Use x- and y-intercepts to graph the line $7x - 4y = 28$.

y-intercept: -7
x-intercept: 4
Use x- and y-intercepts to graph the line $7x - 4y = 28$.

y-intercept: -7 x-intercept: 4
Graphing Lines using Intercepts

Use x- and y-intercepts to graph the line $7x - 4y = 28$.

y-intercept: -7
x-intercept: 4
Outline

1. Rectangular Coordinate System
2. Graphing Lines
3. The Equation of a Line
4. Conclusion
The Slope Equation

The angle of a line is referred to as the slope of the line. It can be found by dividing the change in y by the change in x.

\[m = \frac{y_2 - y_1}{x_2 - x_1} \]
The angle of a line is referred to as the slope of the line. It can be found by dividing the change in y by the change in x. The slope of a line containing points (x_1, y_1) and (x_2, y_2) is

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
The Slope Equation

The angle of a line is referred to as the slope of the line. It can be found by dividing the change in y by the change in x.

![Diagram showing the slope of a line](image)

Slope

The slope of a line containing points (x_1, y_1) and (x_2, y_2) is

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
Finding Slopes

Finding Slope

Find the slope of the following line.

\[m = \frac{3 - 0}{0 - 5} = -\frac{3}{5} \]
Finding Slopes

Finding Slope

Find the slope of the following line.

\[m = \frac{3 - 0}{0 - 5} = -\frac{3}{5} \]
Finding Slopes

Finding Slope

Find the slope of the following line.

\[m = \frac{3 - 0}{0 - 5} = \frac{-3}{5} \]
Finding Slopes

Finding Slope

Find the slope of the following line.

\[
m = \frac{-7 - 0}{0 - 4} = \frac{7}{4}
\]
Finding Slopes

Find the slope of the following line.

\[m = \frac{-7 - 0}{0 - 4} = \frac{7}{4} \]
Finding Slopes

Find the slope of the following line.

\[m = \frac{-7 - 0}{0 - 4} = \frac{7}{4} \]
The Slope-Intercept Equation of a Line

Deriving the Slope-Intercept Form

\[Ax + By = C \]
\[By = -Ax + C \]
\[y = -\frac{A}{B}x + \frac{C}{B} \]

Note that if we plug in 0 for \(x \), then \(y = \frac{C}{B} \), so \((0, \frac{C}{B}) \) is a point on the line, the \(y \)-intercept.

Slope-Intercept Equation of a Line

An equation of a line with slope \(m \) and \(y \)-intercept \((0, b)\) is

\[y = mx + b \]
The Slope-Intercept Equation of a Line

Deriving the Slope-Intercept Form

\[Ax + By = C \]
\[By = -Ax + C \]
\[y = -\frac{A}{B}x + \frac{C}{B} \]

Note that if we plug in 0 for \(x \), then \(y = \frac{C}{B} \), so \((0, \frac{C}{B})\) is a point on the line, the \(y \)-intercept.

Slope-Intercept Equation of a Line

An equation of a line with slope \(m \) and \(y \)-intercept \((0, b)\) is

\[y = mx + b \]
Examples of Finding Slopes

By putting an equation into slope-intercept form, it is possible to read the slope of the line directly from the equation.

Finding Slopes

Find the slope of each equation by writing the equation in slope-intercept form.

1. $3x + 5y = 15$
2. $7x - 4y = 28$
Examples of Finding Slopes

By putting an equation into slope-intercept form, it is possible to read the slope of the line directly from the equation.

Finding Slopes

Find the slope of each equation by writing the equation in slope-intercept form.

1. $3x + 5y = 15$
2. $7x - 4y = 28$
Examples of Finding Slopes

By putting an equation into slope-intercept form, it is possible to read the slope of the line directly from the equation.

Finding Slopes

Find the slope of each equation by writing the equation in slope-intercept form.

1. \(3x + 5y = 15 \)

2. \(7x - 4y = 28 \)
Examples of Finding Slopes

By putting an equation into slope-intercept form, it is possible to read the slope of the line directly from the equation.

Finding Slopes

Find the slope of each equation by writing the equation in slope-intercept form.

1. \(3x + 5y = 15\)

\[
y = -\frac{3}{5}x + 3 \Rightarrow m = -\frac{3}{5}
\]

2. \(7x - 4y = 28\)
Examples of Finding Slopes

By putting an equation into slope-intercept form, it is possible to read the slope of the line directly from the equation.

Finding Slopes

Find the slope of each equation by writing the equation in slope-intercept form.

1. $3x + 5y = 15$

 $$y = -\frac{3}{5}x + 3 \Rightarrow m = -\frac{3}{5}$$

2. $7x - 4y = 28$
Examples of Finding Slopes

By putting an equation into slope-intercept form, it is possible to read the slope of the line directly from the equation.

Finding Slopes

Find the slope of each equation by writing the equation in slope-intercept form.

1. $3x + 5y = 15$

 $y = -\frac{3}{5}x + 3 \Rightarrow m = -\frac{3}{5}$

2. $7x - 4y = 28$

 $y = \frac{7}{4}x - 7 \Rightarrow m = \frac{7}{4}$
Some Special Slopes

Horizontal and vertical lines have special slopes. To see this, recall that the slope of a line $Ax + By = C$ is given by $-\frac{A}{B}$.

Slope of a Horizontal Line
A horizontal line with equation $y = a$ has slope $m = 0$.

Slope of a Vertical Line
A vertical line with equation $x = b$ has an undefined slope.
Some Special Slopes

Horizontal and vertical lines have special slopes. To see this, recall that the slope of a line $Ax + By = C$ is given by $-\frac{A}{B}$.

Slope of a Horizontal Line

A horizontal line with equation $y = a$ has slope $m = 0$.

Slope of a Vertical Line

A vertical line with equation $x = b$ has an undefined slope.
Some Special Slopes

Horizontal and vertical lines have special slopes. To see this, recall that the slope of a line $Ax + By = C$ is given by $-\frac{A}{B}$.

Slope of a Horizontal Line

A horizontal line with equation $y = a$ has slope $m = 0$.

Slope of a Vertical Line

A vertical line with equation $x = b$ has an undefined slope.
We can also use a given slope and point to write the equation for a line.

Point-Slope Equation of a Line

An equation of a nonvertical line with slope m that contains the point (x_1, y_1) is:

$$y - y_1 = m(x - x_1)$$
Point-Slope Equation of a Line

We can also use a given slope and point to write the equation for a line.

Point-Slope Equation of a Line

An equation of a nonvertical line with slope m that contains the point (x_1, y_1) is:

$$y - y_1 = m(x - x_1)$$
Point-Slope Equation of a Line

We can also use a given slope and point to write the equation for a line.

Point-Slope Equation of a Line

An equation of a nonvertical line with slope m that contains the point (x_1, y_1) is:

$$y - y_1 = m(x - x_1)$$

Using the formula for slope between a given point (x_1, y_1) and an arbitrary point (x, y) together with a given slope m gives the equation above.
Finding the Equation of a Line

Now that we have seen three different forms of the equation for a line, we can use whichever one is most appropriate.

Finding Equations

Find the general equation for each line described below.

1. Line with slope $m = -\frac{2}{3}$ through $(2, 4)$
2. Line through points $(2, 5)$ and $(1, 2)$
3. Line with slope $\frac{1}{3}$ with y-intercept -2
Finding the Equation of a Line

Now that we have seen three different forms of the equation for a line, we can use whichever one is most appropriate.

Finding Equations

Find the general equation for each line described below.

1. Line with slope $m = -\frac{2}{3}$ through $(2, 4)$

2. Line through points $(2, 5)$ and $(1, 2)$

3. Line with slope $\frac{1}{5}$ with y-intercept -2.
Finding the Equation of a Line

Now that we have seen three different forms of the equation for a line, we can use whichever one is most appropriate.

Finding Equations

Find the general equation for each line described below.

1. Line with slope $m = -\frac{2}{3}$ through $(2, 4)$

2. Line through points $(2, 5)$ and $(1, 2)$

3. Line with slope $\frac{1}{5}$ with y-intercept -2.
Finding the Equation of a Line

Now that we have seen three different forms of the equation for a line, we can use whichever one is most appropriate.

Finding Equations

Find the general equation for each line described below.

1. Line with slope \(m = -\frac{2}{3} \) through \((2, 4)\)

 \[
 y - 4 = -\frac{2}{3}(x - 2) \Rightarrow 2x + 3y = 6
 \]

2. Line through points \((2, 5)\) and \((1, 2)\)

3. Line with slope \(\frac{1}{5} \) with \(y\)-intercept \(-2\).
Finding the Equation of a Line

Now that we have seen three different forms of the equation for a line, we can use whichever one is most appropriate.

Finding Equations

Find the general equation for each line described below.

1. Line with slope \(m = -\frac{2}{3} \) through (2, 4)

\[
y - 4 = -\frac{2}{3}(x - 2) \Rightarrow 2x + 3y = 6
\]

2. Line through points (2, 5) and (1, 2)

3. Line with slope \(\frac{1}{5} \) with \(y \)-intercept \(-2\).
Now that we have seen three different forms of the equation for a line, we can use whichever one is most appropriate.

Finding Equations

Find the general equation for each line described below.

1. Line with slope $m = -\frac{2}{3}$ through $(2, 4)$

 \[y - 4 = -\frac{2}{3}(x - 2) \Rightarrow 2x + 3y = 6 \]

2. Line through points $(2, 5)$ and $(1, 2)$

 \[m = \frac{5 - 2}{2 - 1} = \frac{3}{1} \Rightarrow y - 2 = 3(x - 1) \Rightarrow 3x - y = 1 \]

3. Line with slope $\frac{1}{5}$ with y-intercept -2.
Finding the Equation of a Line

Now that we have seen three different forms of the equation for a line, we can use whichever one is most appropriate.

Finding Equations

Find the general equation for each line described below.

1. Line with slope $m = -\frac{2}{3}$ through $(2, 4)$

 $y - 4 = -\frac{2}{3}(x - 2) \Rightarrow 2x + 3y = 6$

2. Line through points $(2, 5)$ and $(1, 2)$

 $m = \frac{5 - 2}{2 - 1} = \frac{3}{1} \Rightarrow y - 2 = 3(x - 1) \Rightarrow 3x - y = 1$

3. Line with slope $\frac{1}{5}$ with y-intercept -2.
Finding the Equation of a Line

Now that we have seen three different forms of the equation for a line, we can use whichever one is most appropriate.

Finding Equations

Find the general equation for each line described below.

1. Line with slope \(m = -\frac{2}{3} \) through \((2, 4)\)

\[
y - 4 = -\frac{2}{3}(x - 2) \Rightarrow 2x + 3y = 6
\]

2. Line through points \((2, 5)\) and \((1, 2)\)

\[
m = \frac{5 - 2}{2 - 1} = \frac{3}{1} \Rightarrow y - 2 = 3(x - 1) \Rightarrow 3x - y = 1
\]

3. Line with slope \(\frac{1}{5} \) with \(y\)-intercept \(-2\).

\[
y = \frac{1}{5}x - 2 \Rightarrow x - 5y = 10
\]
Things to Remember from Section 1-1

1. Graphing Lines: Find the Intercepts!

2. Equations of a Line:
 - General Equation: $Ax + By = C$
 - Slope-Intercept: $y = mx + b$
 - Point-Slope: $y - y_1 = m(x - x_1)$
Important Concepts

Things to Remember from Section 1-1

1. **Graphing Lines: Find the Intercepts!**

2. **Equations of a Line:**
 - General Equation: \(Ax + By = C \)
 - Slope-Intercept: \(y = mx + b \)
 - Point-Slope: \(y - y_1 = m(x - x_1) \)
Important Concepts

Things to Remember from Section 1-1

1. Graphing Lines: Find the Intercepts!

2. Equations of a Line:
 - General Equation: $Ax + By = C$
 - Slope-Intercept: $y = mx + b$
 - Point-Slope: $y - y_1 = m(x - x_1)$
Important Concepts

Things to Remember from Section 1-1

1. Graphing Lines: Find the Intercepts!

2. Equations of a Line:
 - General Equation: $Ax + By = C$
 - Slope-Intercept: $y = mx + b$
 - Point-Slope: $y - y_1 = m(x - x_1)$
Important Concepts

Things to Remember from Section 1-1

1. **Graphing Lines:** Find the Intercepts!

2. **Equations of a Line:**
 - **General Equation:** $Ax + By = C$
 - **Slope-Intercept:** $y = mx + b$
 - **Point-Slope:** $y - y_1 = m(x - x_1)$
Important Concepts

Things to Remember from Section 1-1

1. Graphing Lines: Find the Intercepts!

2. Equations of a Line:
 1. General Equation: $Ax + By = C$
 2. Slope-Intercept: $y = mx + b$
 3. Point-Slope: $y - y_1 = m(x - x_1)$
Next time we will look at the interaction between two lines.

For next time

- Read section 1-2 in your text.
- Prepare for a quiz on section 1-1.
Next time we will look at the interaction between two lines.

For next time

- Read section 1-2 in your text.
- Prepare for a quiz on section 1-1.