MATH 105: Finite Mathematics
1-2: Pairs of Lines

Prof. Jonathan Duncan

Walla Walla College

Winter Quarter, 2006
Outline

1. Pairs of Lines
2. Perpendicular Lines
3. Conclusion
Outline

1. Pairs of Lines
2. Perpendicular Lines
3. Conclusion
There are several ways in which two lines can interact with each other. In this section we will examine those possibilities and find out how to determine which relationship a pair of lines has.

Pairs of Lines

Let L and M be two lines in a plane. Then L and M must be:

- intersecting
- parallel
- coincidental
There are several ways in which two lines can interact with each other. In this section we will examine those possibilities and find out how to determine which relationship a pair of lines has.

Pairs of Lines

Let L and M be two lines in a plane. Then L and M must be:

1. intersecting
2. parallel
3. coincidental
There are several ways in which two lines can interact with each other. In this section we will examine those possibilities and find out how to determine which relationship a pair of lines has.

Pairs of Lines

Let L and M be two lines in a plane. Then L and M must be:

1. intersecting
2. parallel
3. coincidental
Relationships Between Lines

There are several ways in which two lines can interact with each other. In this section we will examine those possibilities and find out how to determine which relationship a pair of lines has.

Pairs of Lines

Let L and M be two lines in a plane. Then L and M must be:

1. intersecting
2. parallel
3. coincidental
There are several ways in which two lines can interact with each other. In this section we will examine those possibilities and find out how to determine which relationship a pair of lines has.

Pairs of Lines

Let L and M be two lines in a plane. Then L and M must be:

1. intersecting
2. parallel
3. coincidental
Identifying Pairs of Lines

While we can certainly identify how two lines are related by graphing them, it is often better to compare equations.

Comparing Lines

A pair of lines can be classified as intersecting, parallel, or coincident based on the lines slope and y-intercept.

- **Intersecting lines** have different slopes.
- **Parallel lines** have the same slope and different intercepts.
- **Coincident lines** have the same slope and the same intercepts.
While we can certainly identify how two lines are related by graphing them, it is often better to compare equations.

Comparing Lines

A pair of lines can be classified as intersecting, parallel, or coincident based on the lines slope and y-intercept.

1. **Intersecting lines** have different slopes.
2. **Parallel lines** have the same slope and different intercepts.
3. **Coincident lines** have the same slope and the same intercepts.
Identifying Pairs of Lines

While we can certainly identify how two lines are related by graphing them, it is often better to compare equations.

Comparing Lines

A pair of lines can be classified as intersecting, parallel, or coincident based on the lines slope and y-intercept.

1. Intersecting lines have different slopes.
2. Parallel lines have the same slope and different intercepts.
3. Coincident lines have the same slope and the same intercepts.
Identifying Pairs of Lines

While we can certainly identify how two lines are related by graphing them, it is often better to compare equations.

Comparing Lines

A pair of lines can be classified as intersecting, parallel, or coincident based on the lines slope and y-intercept.

1. Intersecting lines have different slopes.
2. Parallel lines have the same slope and different intercepts.
3. Coincident lines have the same slope and the same intercepts.
While we can certainly identify how two lines are related by graphing them, it is often better to compare equations.

Comparing Lines

A pair of lines can be classified as intersecting, parallel, or coincident based on the lines slope and y-intercept.

1. **Intersecting lines** have different slopes.
2. **Parallel lines** have the same slope and different intercepts.
3. **Coincident lines** have the same slope and the same intercepts.
Identifying Pairs of Lines

Identifying Lines

Using the slope and y-intercept, identify each pair of lines as intersecting, parallel, or coincident.

1. The lines $3x + 5y = 15$ and $6x + 10y = 30$.

2. The lines $7x - 2y = 14$ and $-14x + 4y = 28$.

3. The lines $4x - 6y = 12$ and $6x + 4y = -8$.
Identifying Pairs of Lines

Identifying Lines

Using the slope and y-intercept, identify each pair of lines as intersecting, parallel, or coincident.

1. The lines $3x + 5y = 15$ and $6x + 10y = 30$.

2. The lines $7x - 2y = 14$ and $-14x + 4y = 28$.

3. The lines $4x - 6y = 12$ and $6x + 4y = -8$.
Identifying Pairs of Lines

Identifying Lines

Using the slope and y-intercept, identify each pair of lines as intersecting, parallel, or coincident.

1. The lines $3x + 5y = 15$ and $6x + 10y = 30$. (coincident)

 \[y = -\frac{3}{5}x + 3 \quad y = -\frac{3}{5}x + 3 \]

2. The lines $7x - 2y = 14$ and $-14x + 4y = 28$.

3. The lines $4x - 6y = 12$ and $6x + 4y = -8$.
Identifying Pairs of Lines

Using the slope and y-intercept, identify each pair of lines as intersecting, parallel, or coincident.

1. The lines $3x + 5y = 15$ and $6x + 10y = 30$. (coincident)

 \[
 y = -\frac{3}{5}x + 3 \quad y = -\frac{3}{5}x + 3
 \]

2. The lines $7x - 2y = 14$ and $-14x + 4y = 28$.

3. The lines $4x - 6y = 12$ and $6x + 4y = -8$.
Identifying Pairs of Lines

Using the slope and y-intercept, identify each pair of lines as intersecting, parallel, or coincident.

1. The lines $3x + 5y = 15$ and $6x + 10y = 30$. (coincident)

 \[
 y = -\frac{3}{5}x + 3 \quad y = -\frac{3}{5}x + 3
 \]

2. The lines $7x - 2y = 14$ and $-14x + 4y = 28$. (parallel)

 \[
 y = \frac{7}{2}x - 7 \quad y = \frac{7}{2}x + 7
 \]

3. The lines $4x - 6y = 12$ and $6x + 4y = -8$.

Identifying Pairs of Lines

Using the slope and \(y \)-intercept, identify each pair of lines as intersecting, parallel, or coincident.

1. The lines \(3x + 5y = 15 \) and \(6x + 10y = 30 \). (coincident)
 \[
 y = -\frac{3}{5}x + 3 \quad y = -\frac{3}{5}x + 3
 \]

2. The lines \(7x - 2y = 14 \) and \(-14x + 4y = 28 \). (parallel)
 \[
 y = \frac{7}{2}x - 7 \quad y = \frac{7}{2}x + 7
 \]

3. The lines \(4x - 6y = 12 \) and \(6x + 4y = -8 \).
Identifying Pairs of Lines

Identifying Lines

Using the slope and y-intercept, identify each pair of lines as intersecting, parallel, or coincident.

1. The lines $3x + 5y = 15$ and $6x + 10y = 30$. (coincident)

 \[y = -\frac{3}{5}x + 3 \quad y = -\frac{3}{5}x + 3 \]

2. The lines $7x - 2y = 14$ and $-14x + 4y = 28$. (parallel)

 \[y = \frac{7}{2}x - 7 \quad y = \frac{7}{2}x + 7 \]

3. The lines $4x - 6y = 12$ and $6x + 4y = -8$. (intersecting)

 \[y = \frac{2}{3}x - 2 \quad y = -\frac{3}{2}x - 2 \]
Outline

1. Pairs of Lines
2. Perpendicular Lines
3. Conclusion
In the last example, not only were the lines intersecting, but they intersected each other at right angles.

Limes L_1 and L_2 with slopes m_1 and m_2 are perpendicular if $m_1 \cdot m_2 = -1$

In practice, the slopes of perpendicular lines are negative reciprocals of each other. This makes it easy to check for perpendicular lines, and to construct a line perpendicular to a given line.
Examples

Use the line $2x - 10y = 20$ to perform the following tasks.

1. Find the equation of a line parallel to this line through the point $(1, 2)$.

2. Find the equation of a line perpendicular to this line through the point $(1, 2)$.

3. Graph all three lines.
Examples

Use the line $2x - 10y = 20$ to perform the following tasks.

1. Find the equation of a line parallel to this line through the point $(1, 2)$.

2. Find the equation of a line perpendicular to this line through the point $(1, 2)$.

3. Graph all three lines.
Examples

Use the line $2x - 10y = 20$ to perform the following tasks.

1. Find the equation of a line parallel to this line through the point $(1, 2)$.

 $$x - 5y = -9$$

2. Find the equation of a line perpendicular to this line through the point $(1, 2)$.

3. Graph all three lines.
Examples

Use the line $2x - 10y = 20$ to perform the following tasks.

1. Find the equation of a line parallel to this line through the point $(1, 2)$.

 $x - 5y = -9$

2. Find the equation of a line perpendicular to this line through the point $(1, 2)$.

3. Graph all three lines.
Examples

Use the line $2x - 10y = 20$ to perform the following tasks.

1. Find the equation of a line parallel to this line through the point $(1, 2)$.

$x - 5y = -9$

2. Find the equation of a line perpendicular to this line through the point $(1, 2)$.

$5x + y = 7$

3. Graph all three lines.
Use the line $2x - 10y = 20$ to perform the following tasks.

1. Find the equation of a line parallel to this line through the point $(1, 2)$.

 $$x - 5y = -9$$

2. Find the equation of a line perpendicular to this line through the point $(1, 2)$.

 $$5x + y = 7$$

3. Graph all three lines.
Outline

1. Pairs of Lines
2. Perpendicular Lines
3. Conclusion
Important Concepts

Things to Remember from Section 1-2

1. Three relationships between a pair of lines.
2. Parallel lines have the same slope.
3. Perpendicular lines have negative reciprocals slopes.
Important Concepts

Things to Remember from Section 1-2

1. Three relationships between a pair of lines.

2. Parallel lines have the same slope.

3. Perpendicular lines have negative reciprocals slopes.
Important Concepts

Things to Remember from Section 1-2

1. Three relationships between a pair of lines.
2. Parallel lines have the same slope.
3. Perpendicular lines have negative reciprocals slopes.
Important Concepts

Things to Remember from Section 1-2

1. Three relationships between a pair of lines.
2. Parallel lines have the same slope.
3. Perpendicular lines have negative reciprocals slopes.
Next time we will begin chapter 2, in which we look at solving two or more equations (usually for lines) simultaneously.

For next time
- Review sections 2-1
Next time we will begin chapter 2, in which we look at solving two or more equations (usually for lines) simultaneously.

For next time
- Review sections 2-1