The Matrix Form of a System of Equations

Matrix Multiplication

The Identity Matrix

Conclusion

MATH 105: Finite Mathematics
2-5: Matrix Multiplication

Prof. Jonathan Duncan

Walla Walla College

Winter Quarter, 2006
Outline

1. The Matrix Form of a System of Equations
2. Matrix Multiplication
3. The Identity Matrix
4. Conclusion
Recall that we started working with matrices to make it easier to solve a system of equations.

Matrix Equations

Write the following system of equations as a matrix equation.
Recall that we started working with matrices to make it easier to solve a system of equations.

Matrix Equations

Write the following system of equations as a matrix equation.
Recall that we started working with matrices to make it easier to solve a system of equations.

Matrix Equations

Write the following system of equations as a matrix equation.

\[\begin{align*}
2x + 3y &= 7 \\
3x - 4y &= 2
\end{align*} \]
Systems of Equations

Recall that we started working with matrices to make it easier to solve a system of equations.

Matrix Equations

Write the following system of equations as a matrix equation.

\[
\begin{align*}
2x + 3y &= 7 \\
3x - 4y &= 2
\end{align*}
\]

\[
\begin{bmatrix}
2 & 3 \\
3 & -4
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix}
=
\begin{bmatrix}
7 \\
2
\end{bmatrix}
\]
Systems of Equations

Recall that we started working with matrices to make it easier to solve a system of equations.

Matrix Equations

Write the following system of equations as a matrix equation.

\[
\begin{align*}
2x + 3y &= 7 \\
3x - 4y &= 2
\end{align*}
\]

\[
\begin{bmatrix}
2 & 3 \\
3 & -4
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix}
=
\begin{bmatrix}
7 \\
2
\end{bmatrix}
\]

If we want these two expressions to mean the same thing, then the multiplication of the two matrices must yield:

\[
\begin{bmatrix}
2x + 3y \\
3x - 4y
\end{bmatrix}
=
\begin{bmatrix}
7 \\
2
\end{bmatrix}
\]
Multiplying Columns and Rows

Example

Expanding the rule above, multiply the 1×3 row vector by the 3×1 column vector as shown below.

$$\begin{bmatrix} 2 & 4 & 0 \end{bmatrix} \begin{bmatrix} -3 \\ 1 \\ 5 \end{bmatrix}$$
Example

Expanding the rule above, multiply the 1×3 row vector by the 3×1 column vector as shown below.

$$\begin{bmatrix} 2 & 4 & 0 \end{bmatrix} \begin{bmatrix} -3 \\ 1 \\ 5 \end{bmatrix}$$

$$= 2(-3) + 4(1) + 0(5) = -2$$
Outline

1. The Matrix Form of a System of Equations
2. Matrix Multiplication
3. The Identity Matrix
4. Conclusion
If we know how to multiply a row vector by a column vector, we can use that to define matrix multiplication in general.

Matrix Multiplication

If \(A \) is an \(m \times n \) matrix and \(B \) is an \(n \times k \) matrix, then the product \(AB \) is defined to be the \(m \times k \) matrix whose entry in the \(i \)th row, \(j \)th column is the sum of the products of the \(i \)th row of \(A \) and \(j \)th column of \(B \).

Things to Notice:

- The matrices must have matching “inner” dimensions.
- The new matrix has the “outer” dimensions of the two matrices.
Matrix Multiplication

If we know how to multiply a row vector by a column vector, we can use that to define matrix multiplication in general.

If A is an $m \times n$ matrix and B is an $n \times k$ matrix, then the product AB is defined to be the $m \times k$ matrix whose entry in the ith row, jth column is the sum of the products of the ith row of A and jth column of B.

Things to Notice:
- The matrices must have matching "inner" dimensions.
- The new matrix has the "outer" dimensions of the two matrices.
Matrix Multiplication

If we know how to multiply a row vector by a column vector, we can use that to define matrix multiplication in general.

Matrix Multiplication

If A is an $m \times n$ matrix and B is an $n \times k$ matrix, then the product AB is defined to be the $m \times k$ matrix whose entry in the ith row, jth column is the sum of the products of the ith row of A and jth column of B.

Things to Notice:

1. The matrices must have matching “inner” dimensions.
2. The new matrix has the “outer” dimensions of the two matrices.
Matrix Multiplication

If we know how to multiply a row vector by a column vector, we can use that to define matrix multiplication in general.

Matrix Multiplication

If \(A \) is an \(m \times n \) matrix and \(B \) is an \(n \times k \) matrix, then the produce \(AB \) is defined to be the \(m \times k \) matrix whose entry in the \(i \)th row, \(j \)th column is the sum of the products of the \(i \)th row of \(A \) and \(j \)th column of \(B \).

Things to Notice:

1. The matrices must have matching “inner” dimensions.
2. The new matrix has the “outer” dimensions of the two matrices.
Matrix Multiplication

If we know how to multiply a row vector by a column vector, we can use that to define matrix multiplication in general.

Matrix Multiplication

If \(A \) is an \(m \times n \) matrix and \(B \) is an \(n \times k \) matrix, then the product \(AB \) is defined to be the \(m \times k \) matrix whose entry in the \(i \)th row, \(j \)th column is the sum of the products of the \(i \)th row of \(A \) and \(j \)th column of \(B \).

Things to Notice:

1. The matrices must have matching “inner” dimensions.
2. The new matrix has the “outer” dimensions of the two matrices.
Examples of Matrix Multiplication

Multiply

Find the product of the matrices below, if possible.

1. \[
\begin{bmatrix}
1 & -2 & 3 \\
4 & 0 & 6 \\
\end{bmatrix}
\begin{bmatrix}
-1 & 2 & 1 \\
1 & 3 & 0 \\
0 & 4 & -2 \\
\end{bmatrix}
\]

2. \[
\begin{bmatrix}
2 & 3 \\
4 & 1 \\
\end{bmatrix}
\begin{bmatrix}
2 & 5 \\
7 & 3 \\
1 & 4 \\
\end{bmatrix}
\]
Examples of Matrix Multiplication

Multiply

Find the product of the matrices below, if possible.

1. \[
\begin{bmatrix}
1 & -2 & 3 \\
4 & 0 & 6
\end{bmatrix} \begin{bmatrix}
-1 & 2 & 1 \\
1 & 3 & 0 \\
0 & 4 & -2
\end{bmatrix}
\]

2. \[
\begin{bmatrix}
2 & 3 \\
4 & 1
\end{bmatrix} \begin{bmatrix}
2 & 5 \\
7 & 3 \\
1 & 4
\end{bmatrix}
\]
Examples of Matrix Multiplication

Multiply

Find the product of the matrices below, if possible.

1

\[
\begin{bmatrix} 1 & -2 & 3 \\ 4 & 0 & 6 \end{bmatrix} \begin{bmatrix} -1 & 2 & 1 \\ 1 & 3 & 0 \\ 0 & 4 & -2 \end{bmatrix}
\]

2

\[
\begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} 2 & 5 \\ 7 & 3 \\ 1 & 4 \end{bmatrix}
\]
Properties of Matrix Multiplication

Matrix multiplication does not have all the same properties as multiplication of numbers.

Matrix Multiplication is Not Commutative

Use the matrices A and B given below to show that matrix multiplication is not commutative.

$$A = \begin{bmatrix} 2 & 1 \\ 0 & 4 \end{bmatrix} \quad B = \begin{bmatrix} -3 & 1 \\ 1 & 2 \end{bmatrix}$$

$$AB = \begin{bmatrix} -5 & 4 \\ 4 & 8 \end{bmatrix}$$

$$BA = \begin{bmatrix} -5 & 4 \\ 4 & 9 \end{bmatrix}$$
Properties of Matrix Multiplication

Matrix multiplication does not have all the same properties as multiplication of numbers.

Matrix Multiplication is Not Commutative

Use the matrices A and B given below to show that matrix multiplication is not commutative.

$$A = \begin{bmatrix} 2 & 1 \\ 0 & 4 \end{bmatrix} \quad B = \begin{bmatrix} -3 & 1 \\ 1 & 2 \end{bmatrix}$$

1. $AB = \begin{bmatrix} -5 & 4 \\ 4 & 8 \end{bmatrix}$
2. $BA = \begin{bmatrix} -6 & 1 \\ 2 & 9 \end{bmatrix}$
Matrix multiplication does not have all the same properties as multiplication of numbers.

Matrix Multiplication is Not Commutative

Use the matrices A and B given below to show that matrix multiplication is not commutative.

\[A = \begin{bmatrix} 2 & 1 \\ 0 & 4 \end{bmatrix} \quad B = \begin{bmatrix} -3 & 1 \\ 1 & 2 \end{bmatrix} \]

1. $AB = \begin{bmatrix} -5 & 4 \\ 4 & 8 \end{bmatrix}$
2. $BA = \begin{bmatrix} -6 & 1 \\ 2 & 9 \end{bmatrix}$
Properties of Matrix Multiplication

Matrix multiplication does not have all the same properties as multiplication of numbers.

Matrix Multiplication is Not Commutative

Use the matrices A and B given below to show that matrix multiplication is not commutative.

$$A = \begin{bmatrix} 2 & 1 \\ 0 & 4 \end{bmatrix} \quad B = \begin{bmatrix} -3 & 1 \\ 1 & 2 \end{bmatrix}$$

1. $AB = \begin{bmatrix} -5 & 4 \\ 4 & 8 \end{bmatrix}$
2. $BA = \begin{bmatrix} -6 & 1 \\ 2 & 9 \end{bmatrix}$
While matrix multiplication may not be commutative, there are some properties from the multiplication of real numbers which do still hold.

Properties that DO Work

If A, B, and C are matrices of the appropriate dimension then,

- $A(BC) = (AB)C$ (Associative Property)
- $A(B+C) = AB + AC$ (Distributive Property)
While matrix multiplication may not be commutative, there are some properties from the multiplication of real numbers which do still hold.

Properties that DO Work

If \(A\), \(B\), and \(C\) are matrices of the appropriate dimension then,

1. \(A(BC) = (AB)C\) (Associative Property)
2. \(A(B + C) = AB + AC\) (Distributive Property)
Properties of Matrix Multiplication

While matrix multiplication may not be commutative, there are some properties from the multiplication of real numbers which do still hold.

Properties that DO Work

If A, B, and C are matrices of the appropriate dimension then,

1. $A(BC) = (AB)C$ (Associative Property)
2. $A(B + C) = AB + AC$ (Distributive Property)
Properties of Matrix Multiplication

While matrix multiplication may not be commutative, there are some properties from the multiplication of real numbers which do still hold.

Properties that DO Work

If A, B, and C are matrices of the appropriate dimension then,

1. $A(BC) = (AB)C$ (Associative Property)
2. $A(B + C) = AB + AC$ (Distributive Property)
Outline

1. The Matrix Form of a System of Equations
2. Matrix Multiplication
3. The Identity Matrix
4. Conclusion
Multiplying by 1

When multiplying real numbers, the number 1 is special because for any real number \(a \), \(1 \cdot a = a \cdot 1 = a \). Because of this, 1 is called the **identity** for multiplication.

Identity Matrix

For any positive integer \(n \), the **identity matrix**, \(I_n \), is an \(n \times n \) square matrix with 1s on the top-left to bottom-right diagonal and 0s elsewhere.

Checking the Identity

Show that \(I_3 \) works as an identity matrix for the matrix

\[
\begin{bmatrix}
2 & 4 & -1 \\
5 & 2 & 3 \\
-3 & 0 & 5
\end{bmatrix}
\]
Multiplying by 1

When multiplying real numbers, the number 1 is special because for any real number a, $1 \cdot a = a \cdot 1 = a$. Because of this, 1 is called the **identity** for multiplication.

Identity Matrix

For any positive integer n, the **identity matrix**, I_n, is an $n \times n$ square matrix with 1s on the top-left to bottom-right diagonal and 0s elsewhere.

Checking the Identity

Show that I_3 works as an identity matrix for the matrix

$$
\begin{bmatrix}
2 & 4 & -1 \\
5 & 2 & 3 \\
-3 & 0 & 5
\end{bmatrix}
$$
Multiplying by 1

When multiplying real numbers, the number 1 is special because for any real number a, $1 \cdot a = a \cdot 1 = a$. Because of this, 1 is called the **identity** for multiplication.

Identity Matrix

For any positive integer n, the **identity matrix**, I_n, is an $n \times n$ square matrix with 1s on the top-left to bottom-right diagonal and 0s elsewhere.

Checking the Identity

Show that I_3 works as an identity matrix for the matrix

\[
\begin{bmatrix}
2 & 4 & -1 \\
5 & 2 & 3 \\
-3 & 0 & 5
\end{bmatrix}
\]
Outline

1. The Matrix Form of a System of Equations
2. Matrix Multiplication
3. The Identity Matrix
4. Conclusion
Important Concepts

Things to Remember from Section 2-5

1. Matrix Multiplication and Dimensions
2. Multiplying Matrices
3. Matrix Multiplication is not Commutative.
Important Concepts

Things to Remember from Section 2-5

1. **Matrix Multiplication and Dimensions**
2. Multiplying Matrices
3. Matrix Multiplication is **not** Commutative.
Things to Remember from Section 2-5

1. Matrix Multiplication and Dimensions

2. Multiplying Matrices

3. Matrix Multiplication is not Commutative.
Important Concepts

Things to Remember from Section 2-5

1. Matrix Multiplication and Dimensions
2. Multiplying Matrices
3. Matrix Multiplication is not Commutative.
In section 2-6 we will find out how to “divide” by a matrix in order to solve the matrix equation we saw at the beginning of this section.

For next time
- Read section 2-6
In section 2-6 we will find out how to “divide” by a matrix in order to solve the matrix equation we saw at the beginning of this section.

For next time
- Read section 2-6