MATH 105: Finite Mathematics
2-6: The Inverse of a Matrix

Prof. Jonathan Duncan

Walla Walla College

Winter Quarter, 2006
Recall that last time we saw that a system of equations can be represented as a matrix equation as shown below.

Example

Write the following system of equations in matrix form.
Recall that last time we saw that a system of equations can be represented as a matrix equation as shown below.

Example

Write the following system of equations in matrix form.

\[
\begin{align*}
2x & + 3y = 7 \\
3x & - 4y = 2
\end{align*}
\]
Recall that last time we saw that a system of equations can be represented as a matrix equation as shown below.

Example
Write the following system of equations in matrix form.

\[
\begin{align*}
2x + 3y &= 7 \\
3x - 4y &= 2
\end{align*}
\]

\[
\begin{bmatrix}
2 & 3 \\
3 & -4
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix}
=
\begin{bmatrix}
7 \\
2
\end{bmatrix}
\]
Recall that last time we saw that a system of equations can be represented as a matrix equation as shown below.

Example

Write the following system of equations in matrix form.

\[
\begin{aligned}
2x + 3y &= 7 \\
3x - 4y &= 2
\end{aligned}
\]

\[
\begin{bmatrix}
2 & 3 \\
3 & -4
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix} =
\begin{bmatrix}
7 \\
2
\end{bmatrix}
\]

\[AX = B\]
Recall that last time we saw that a system of equations can be represented as a matrix equation as shown below.

Example

Write the following system of equations in matrix form.

\[
\begin{align*}
2x + 3y &= 7 \\
3x - 4y &= 2
\end{align*}
\]

\[
\begin{bmatrix}
2 & 3 \\
3 & -4
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix}
=
\begin{bmatrix}
7 \\
2
\end{bmatrix}
= AX = B
\]

If we wish to use the matrix equation on the right to solve a system of equations, then we need to review how we solve basic equations involving numbers.
The most basic algebra equation, $ax = b$, is solved using the multiplicative inverse of a.

Example

Solve the equation $3x = 6$ for x.

Step 1: Multiply by $\frac{1}{3}$	$\frac{1}{3} \cdot (3x) = \frac{1}{3} \cdot (6)$
Step 2: Simplify the Right	$1 \cdot x = 2$
Step 3: Simplify the Left	$x = 2$
Step 4: Solution	$x = 2$
Solving a Simple Equation

The most basic algebra equation, $ax = b$, is solved using the multiplicative inverse of a.

Example

Solve the equation $3x = 6$ for x.

Step 1: Multiply by $\frac{1}{3}$

$$\frac{1}{3} \cdot (3x) = \frac{1}{3} \cdot (6)$$

Step 2: Simplify the Right

$$\left(\frac{1}{3} \cdot 3\right) x = 2$$

Step 3: Simplify the Left

$$1 \cdot x = 2$$

Step 4: Solution

$$x = 2$$
Solving a Simple Equation

The most basic algebra equation, $ax = b$, is solved using the multiplicative inverse of a.

Example

Solve the equation $3x = 6$ for x.

<table>
<thead>
<tr>
<th>Step 1: Multiply by $\frac{1}{3}$</th>
<th>$\frac{1}{3} \cdot (3x) = \frac{1}{3} \cdot (6)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2: Simplify the Right</td>
<td>$(\frac{1}{3} \cdot 3) x = 2$</td>
</tr>
<tr>
<td>Step 3: Simplify the Left</td>
<td>$1 \cdot x = 2$</td>
</tr>
<tr>
<td>Step 4: Solution</td>
<td>$x = 2$</td>
</tr>
</tbody>
</table>
The most basic algebra equation, \(ax = b \), is solved using the multiplicative inverse of \(a \).

Example

Solve the equation \(3x = 6 \) for \(x \).

Step 1: Multiply by \(\frac{1}{3} \)

\[
\frac{1}{3} \cdot (3x) = \frac{1}{3} \cdot (6)
\]

Step 2: Simplify the Right

\[
(\frac{1}{3} \cdot 3)x = 2
\]

Step 3: Simplify the Left

\[
1 \cdot x = 2
\]

Step 4: Solution

\[
x = 2
\]
The most basic algebra equation, \(ax = b \), is solved using the multiplicative inverse of \(a \).

Example

Solve the equation \(3x = 6 \) for \(x \).

Step 1: Multiply by \(\frac{1}{3} \)

\[\frac{1}{3} \cdot (3x) = \frac{1}{3} \cdot (6) \]

Step 2: Simplify the Right

\[\left(\frac{1}{3} \cdot 3 \right) x = 2 \]

Step 3: Simplify the Left

\[1 \cdot x = 2 \]

Step 4: Solution

\[x = 2 \]
Solving a Simple Equation

The most basic algebra equation, $ax = b$, is solved using the multiplicative inverse of a.

Example

Solve the equation $3x = 6$ for x.

Step 1: Multiply by $\frac{1}{3}$

\[
\frac{1}{3} \cdot (3x) = \frac{1}{3} \cdot (6)
\]

Step 2: Simplify the Right

\[
(\frac{1}{3} \cdot 3) x = 2
\]

Step 3: Simplify the Left

\[
1 \cdot x = 2
\]

Step 4: Solution

\[
x = 2
\]
Solving a Simple Equation

The most basic algebra equation, \(ax = b \), is solved using the multiplicative inverse of \(a \).

Example

Solve the equation \(3x = 6 \) for \(x \).

Step 1: Multiply by \(\frac{1}{3} \)
\[
\frac{1}{3} \cdot (3x) = \frac{1}{3} \cdot (6)
\]

Step 2: Simplify the Right
\[
(\frac{1}{3} \cdot 3) \cdot x = 2
\]

Step 3: Simplify the Left
\[
1 \cdot x = 2
\]

Step 4: Solution
\[
x = 2
\]

This solution process worked because \(\frac{1}{3} \) is the inverse of 3, so that \(\frac{1}{3} \cdot 3 = 1 \), the identity for multiplication.
Matrix Inverse

To solve the matrix equation $AX = B$ we need to find a matrix which we can multiply by A to get the identity I_n.

Matrix Inverse

Let A be an $n \times n$ matrix. Then a matrix A^{-1} is the inverse of A if $AA^{-1} = A^{-1}A = I_n$.

Caution:

Just as with numbers, not every matrix will have an inverse!
Matrix Inverse

To solve the matrix equation $AX = B$ we need to find a matrix which we can multiply by A to get the identity I_n.

Matrix Inverse

Let A be an $n \times n$ matrix. Then a matrix A^{-1} is the inverse of A if $AA^{-1} = A^{-1}A = I_n$.

Caution:

Just as with numbers, not every matrix will have an inverse!
Matrix Inverse

To solve the matrix equation $AX = B$ we need to find a matrix which we can multiply by A to get the identity I_n.

Matrix Inverse

Let A be an $n \times n$ matrix. Then a matrix A^{-1} is the inverse of A if $AA^{-1} = A^{-1}A = I_n$.

Caution:

Just as with numbers, not every matrix will have an inverse!
Verifying Matrix Inverses

Example

Show that \[
\begin{bmatrix}
-1 \\ 3
\end{bmatrix}
\begin{bmatrix}
-2 \\ 4
\end{bmatrix}
\text{ and }
\begin{bmatrix}
2 \\ -3/2
\end{bmatrix}
\begin{bmatrix}
1 \\ -1/2
\end{bmatrix}
\] are inverses.

1. \[
\begin{bmatrix}
-1 & -2 \\ 3 & 4
\end{bmatrix}
\begin{bmatrix}
2/3 & 1/2 \\ -3/2 & -1/2
\end{bmatrix}
= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
= I_2
\]

2. \[
\begin{bmatrix}
2 \\ -3/2
\end{bmatrix}
\begin{bmatrix}
-1 \\ 3
\end{bmatrix}
\begin{bmatrix}
-2 \\ 4
\end{bmatrix}
= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
= I_2
\]
Verifying Matrix Inverses

Example

Show that \[
\begin{bmatrix}
-1 & -2 \\
3 & 4
\end{bmatrix}
\text{ and } \begin{bmatrix}
2 & 1 \\
-3/2 & -1/2
\end{bmatrix}
\] are inverses.

1. \[
\begin{bmatrix}
-1 & -2 \\
3 & 4
\end{bmatrix}
\begin{bmatrix}
2 & 1 \\
-3/2 & -1/2
\end{bmatrix}
= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_2
\]

2. \[
\begin{bmatrix}
2 & 1 \\
-3/2 & -1/2
\end{bmatrix}
\begin{bmatrix}
-1 & -2 \\
3 & 4
\end{bmatrix}
= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_2
\]
Verifying Matrix Inverses

Example

Show that \[
\begin{bmatrix}
-1 & -2 \\
3 & 4
\end{bmatrix}
\text{ and } \begin{bmatrix}
2 & 1 \\
-3 & -\frac{1}{2}
\end{bmatrix}
\]
are inverses.

1. \[
\begin{bmatrix}
-1 & -2 \\
3 & 4
\end{bmatrix}
\begin{bmatrix}
2 & 1 \\
-\frac{3}{2} & -\frac{1}{2}
\end{bmatrix}
= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_2
\]

2. \[
\begin{bmatrix}
2 & 1 \\
-\frac{3}{2} & -\frac{1}{2}
\end{bmatrix}
\begin{bmatrix}
-1 & -2 \\
3 & 4
\end{bmatrix}
= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_2
\]
Verifying Matrix Inverses

Example

Show that \(\begin{bmatrix} -1 & -2 \\ 3 & 4 \end{bmatrix} \) and \(\begin{bmatrix} 2 & 1 \\ -\frac{3}{2} & -\frac{1}{2} \end{bmatrix} \) are inverses.

\[
\begin{bmatrix} -1 & -2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -\frac{3}{2} & -\frac{1}{2} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_2
\]

\[
\begin{bmatrix} 2 & 1 \\ -\frac{3}{2} & -\frac{1}{2} \end{bmatrix} \begin{bmatrix} -1 & -2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_2
\]

While it is relatively easy to verify that matrices are inverses, we really need to be able to find the inverse of a given matrix.
Finding a Matrix Inverse

To find the inverse of a matrix \(A \) we will use the fact that \(AA^{-1} = I_n \).

Find \(A^{-1} \)

Let \(A = \begin{bmatrix} 3 & 2 \\ -1 & 4 \end{bmatrix} \) and find \(A^{-1} = \begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix} \).

\[
AA^{-1} = I_2 \Rightarrow \begin{bmatrix} 3 & 2 \\ -1 & 4 \end{bmatrix} \begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
\]

\[
\begin{bmatrix} 3x_1 + 2x_3 & 3x_2 + 2x_4 \\ -x_1 + 4x_3 & -x_2 + 4x_4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
\]

This gives two systems of equations:

\[
\begin{align*}
3x_1 + 2x_3 &= 1 \\
-x_1 + 4x_3 &= 0
\end{align*}
\]

\[
\begin{align*}
3x_2 + 2x_4 &= 0 \\
-x_2 + 4x_4 &= 1
\end{align*}
\]

Finding a Matrix Inverse

To find the inverse of a matrix A we will use the fact that $AA^{-1} = I_n$.

Let $A = \begin{bmatrix} 3 & 2 \\ -1 & 4 \end{bmatrix}$ and find $A^{-1} = \begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix}$.

$$AA^{-1} = I_2 \Rightarrow \begin{bmatrix} 3 & 2 \\ -1 & 4 \end{bmatrix} \begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 3x_1 + 2x_3 & 3x_2 + 2x_4 \\ -x_1 + 4x_3 & -x_2 + 4x_4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

This gives two systems of equations:

$$\begin{cases} 3x_1 + 2x_3 = 1 \\ -x_1 + 4x_3 = 0 \end{cases}$$

$$\begin{cases} 3x_2 + 2x_4 = 0 \\ -x_2 + 4x_4 = 1 \end{cases}$$
Finding a Matrix Inverse

To find the inverse of a matrix A we will use the fact that $AA^{-1} = I_n$.

Let $A = \begin{bmatrix} 3 & 2 \\ -1 & 4 \end{bmatrix}$ and find $A^{-1} = \begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix}$.

$$AA^{-1} = I_2 \Rightarrow \begin{bmatrix} 3 & 2 \\ -1 & 4 \end{bmatrix} \begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 3x_1 + 2x_3 & 3x_2 + 2x_4 \\ -x_1 + 4x_3 & -x_2 + 4x_4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

This gives two systems of equations:

\[
\begin{align*}
3x_1 + 2x_3 &= 1 \\
-x_1 + 4x_3 &= 0
\end{align*}
\]

\[
\begin{align*}
3x_2 + 2x_4 &= 0 \\
-x_2 + 4x_4 &= 1
\end{align*}
\]
Finding a Matrix Inverse

To find the inverse of a matrix A we will use the fact that $AA^{-1} = I_n$.

Find A^{-1}

Let $A = \begin{bmatrix} 3 & 2 \\ -1 & 4 \end{bmatrix}$ and find $A^{-1} = \begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix}$.

$AA^{-1} = I_2 \Rightarrow \begin{bmatrix} 3 & 2 \\ -1 & 4 \end{bmatrix} \begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

\[
\begin{bmatrix} 3x_1 + 2x_3 & 3x_2 + 2x_4 \\ -x_1 + 4x_3 & -x_2 + 4x_4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
\]

This gives two systems of equations:

\[
\begin{align*}
3x_1 + 2x_3 &= 1 \\
-x_1 + 4x_3 &= 0
\end{align*}
\]

\[
\begin{align*}
3x_2 + 2x_4 &= 0 \\
-x_2 + 4x_4 &= 1
\end{align*}
\]
Finding a Matrix Inverse

To find the inverse of a matrix A we will use the fact that $AA^{-1} = I_n$.

Let $A = \begin{bmatrix} 3 & 2 \\ -1 & 4 \end{bmatrix}$ and find $A^{-1} = \begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix}$.

$$AA^{-1} = I_2 \Rightarrow \begin{bmatrix} 3 & 2 \\ -1 & 4 \end{bmatrix} \begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 3x_1 + 2x_3 & 3x_2 + 2x_4 \\ -x_1 + 4x_3 & -x_2 + 4x_4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

This gives two systems of equations:

$$\begin{cases} 3x_1 + 2x_3 = 1 \\ -x_1 + 4x_3 = 0 \end{cases} \quad \begin{cases} 3x_2 + 2x_4 = 0 \\ -x_2 + 4x_4 = 1 \end{cases}$$
Finding the Matrix Inverse, Cont.

Solve the systems of equations:

\[
\begin{align*}
3x_1 + 2x_3 &= 1 \\
-x_1 + 4x_3 &= 0
\end{align*}
\]

\[
\begin{align*}
3x_2 + 2x_4 &= 0 \\
-x_2 + 4x_4 &= 1
\end{align*}
\]

\[
\begin{bmatrix}
3 & 2 & | & 1 & 0 \\
-1 & 4 & | & 0 & 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 0 & | & \frac{4}{14} & -\frac{2}{14} \\
0 & 1 & | & \frac{1}{14} & \frac{3}{14}
\end{bmatrix}
\]

\[
A^{-1} = \begin{bmatrix}
\frac{4}{14} & -\frac{2}{14} \\
\frac{1}{14} & \frac{3}{14}
\end{bmatrix}
\]
Finding the Matrix Inverse, Cont.

Solve the systems of equations:

\[
\begin{align*}
3x_1 + 2x_3 &= 1 \\
-x_1 + 4x_3 &= 0
\end{align*}
\]

\[
\begin{align*}
3x_2 + 2x_4 &= 0 \\
-x_2 + 4x_4 &= 1
\end{align*}
\]

\[
\begin{bmatrix}
3 & 2 & | & 1 & 0 \\
-1 & 4 & | & 0 & 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 0 & | & \frac{4}{14} & -\frac{2}{14} \\
0 & 1 & | & \frac{1}{14} & \frac{3}{14}
\end{bmatrix}
\]

\[
A^{-1} = \begin{bmatrix}
\frac{4}{14} & -\frac{2}{14} \\
\frac{1}{14} & \frac{3}{14}
\end{bmatrix}
\]
Finding the Matrix Inverse, Cont...

Finding a Matrix Inverse, Continued

Solve the systems of equations:

\[
\begin{align*}
3x_1 + 2x_3 &= 1 \\
-x_1 + 4x_3 &= 0
\end{align*}
\]

\[
\begin{align*}
3x_2 + 2x_4 &= 0 \\
x_2 + 4x_4 &= 1
\end{align*}
\]

\[
\begin{bmatrix}
3 & 2 & | & 1 & 0 \\
-1 & 4 & | & 0 & 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 0 & | & \frac{4}{14} & -\frac{2}{14} \\
0 & 1 & | & \frac{1}{14} & \frac{3}{14}
\end{bmatrix}
\]

\[
A^{-1} = \begin{bmatrix}
\frac{4}{14} & -\frac{2}{14} \\
\frac{1}{14} & \frac{3}{14}
\end{bmatrix}
\]
Finding the Matrix Inverse, Cont.

Find a Matrix Inverse, Continued

Solve the systems of equations:

\[
\begin{align*}
3x_1 + 2x_3 &= 1 \\
-x_1 + 4x_3 &= 0
\end{align*}
\]

\[
\begin{align*}
3x_2 + 2x_4 &= 0 \\
-x_2 + 4x_4 &= 1
\end{align*}
\]

\[
\begin{bmatrix}
3 & 2 & | & 1 & 0 \\
-1 & 4 & | & 0 & 1
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 0 & | & \frac{4}{14} & -\frac{2}{14} \\
0 & 1 & | & \frac{1}{14} & \frac{3}{14}
\end{bmatrix}
\]

\[
A^{-1} = \begin{bmatrix}
\frac{4}{14} & -\frac{2}{14} \\
\frac{1}{14} & \frac{3}{14}
\end{bmatrix}
\]
General Rule for Finding An Inverse

Applying the lessons of the previous example yields a general procedure for finding the inverse of a matrix.

Finding a Matrix Inverse

To find the inverse of a $n \times n$ matrix A, form the augmented matrix $[A \mid I_n]$ and use row reduction to transform it into $[I_n \mid A^{-1}]$.

Caution:

It may not be possible to get I_n on the left side of the matrix. If it is not possible, then the matrix A has no inverse.
General Rule for Finding An Inverse

Applying the lessons of the previous example yields a general procedure for finding the inverse of a matrix.

Finding a Matrix Inverse

To find the inverse of a \(n \times n \) matrix \(A \), form the augmented matrix \([A \mid I_n]\) and use row reduction to transform it into \([I_n \mid A^{-1}]\).

Caution:

It may not be possible to get \(I_n \) on the left side of the matrix. If it is not possible, then the matrix \(A \) has no inverse.
General Rule for Finding An Inverse

Applying the lessons of the previous example yields a general procedure for finding the inverse of a matrix.

Finding a Matrix Inverse

To find the inverse of a $n \times n$ matrix A, form the augmented matrix $[A | I_n]$ and use row reduction to transform it into $[I_n | A^{-1}]$.

Caution:

It may not be possible to get I_n on the left side of the matrix. If it is not possible, then the matrix A has no inverse.
Finding the Inverse of a 3×3 Matrix

Example

Find the inverse of the following matrix, if it exists.

$$
\begin{bmatrix}
1 & 1 & 1 \\
3 & -4 & 2 \\
0 & 0 & 0 \\
\end{bmatrix}
$$
Finding the Inverse of a 3 × 3 Matrix

Example

Find the inverse of the following matrix, if it exists.

\[
\begin{bmatrix}
1 & 1 & 1 \\
3 & -4 & 2 \\
0 & 0 & 0
\end{bmatrix}
\]

Row operations yield:

\[
\begin{bmatrix}
1 & 0 & \frac{6}{7} \\
0 & 1 & \frac{1}{7} \\
0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
\frac{4}{7} & \frac{1}{7} & 0 \\
\frac{3}{7} & -\frac{1}{7} & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

And therefore there is no inverse.
Outline

1. Solving a Matrix Equation
2. The Inverse of a Matrix
3. Solving Systems of Equations
4. Conclusion
Using A^{-1} to Solve a System of Equations

The main reason we are interested in matrix inverses is to solve a system of equations written in matrix form.

Solving a System of Equations

If A is the matrix of coefficients for a system of equations, X is the column vector containing the system variables, and B is the column vector containing the constants, then:

$$AX = B \Rightarrow A^{-1}AX = A^{-1}B$$

$$\Rightarrow I_nX = A^{-1}B$$

$$\Rightarrow X = A^{-1}B$$

Caution:

A system of equations can only be solved in this way if it has a unique solution.
Using A^{-1} to Solve a System of Equations

The main reason we are interested in matrix inverses is to solve a system of equations written in matrix form.

Solving a System of Equations

If A is the matrix of coefficients for a system of equations, X is the column vector containing the system variables, and B is the column vector containing the constants, then:

$$AX = B \Rightarrow A^{-1}AX = A^{-1}B$$

$$\Rightarrow I_nX = A^{-1}B$$

$$\Rightarrow X = A^{-1}B$$

Caution:

A system of equations can only be solved in this way if it has a unique solution.
Using A^{-1} to Solve a System of Equations

The main reason we are interested in matrix inverses is to solve a system of equations written in matrix form.

Solving a System of Equations

If A is the matrix of coefficients for a system of equations, X is the column vector containing the system variables, and B is the column vector containing the constants, then:

$$AX = B \Rightarrow A^{-1}AX = A^{-1}B$$

$$\Rightarrow I_nX = A^{-1}B$$

$$\Rightarrow X = A^{-1}B$$

Caution:

A system of equations can only be solved in this way if it has a unique solution.
An Example

Example

Use a matrix equation to set-up and solve each system of equations given below.

1. \[
\begin{align*}
-x - 2y &= 1 \\
3x + 4y &= 3
\end{align*}
\]

2. \[
\begin{align*}
x + y - z &= 6 \\
3x - y &= 8 \\
2x - 3y + 4z &= -3
\end{align*}
\]
Example

Use a matrix equation to set-up and solve each system of equations given below.

1. \[
\begin{align*}
-x & - 2y = 1 \\
3x & + 4y = 3
\end{align*}
\]

2. \[
\begin{align*}
x & + y - z = 6 \\
3x & - y = 8 \\
2x & - 3y + 4z = -3
\end{align*}
\]
Example

Use a matrix equation to set-up and solve each system of equations given below.

1. \[
\begin{align*}
-x - 2y &= 1 \\
3x + 4y &= 3 \\
\end{align*}
\]

2. \[
\begin{align*}
x + y - z &= 6 \\
3x - y &= 8 \\
2x - 3y + 4z &= -3 \\
\end{align*}
\]
Reusing Results

One major advantage of solving a system of equations using a matrix equation is that if your matrix of coefficients A stays the same, but your matrix B changes, you can reuse most of your work.

Example

Solve each of the following systems of equations using the results from the last part of the previous question.

\[
\begin{align*}
\begin{cases}
 x + y - z &= 2 \\
 3x - y &= 1 \\
 2x - 3y + 4z &= 0
\end{cases}
\end{align*}
\]
One major advantage of solving a system of equations using a matrix equation is that if your matrix of coefficients A stays the same, but your matrix B changes, you can reuse most of your work.

Example

Solve each of the following systems of equations using the results from the last part of the previous question.

1. \[
\begin{align*}
 x + y - z &= 2 \\
 3x - y &= 1 \\
 2x - 3y + 4z &= 0
\end{align*}
\]

2. \[
\begin{align*}
 x + y - z &= 0 \\
 3x - y &= -14 \\
 2x - 3y + 4z &= -13
\end{align*}
\]
Reusing Results

One major advantage of solving a system of equations using a matrix equation is that if your matrix of coefficients A stays the same, but your matrix B changes, you can reuse most of your work.

Example

Solve each of the following systems of equations using the results from the last part of the previous question.

1. \[
\begin{align*}
 x + y - z &= 2 \\
 3x - y &= 1 \\
 2x - 3y + 4z &= 0
\end{align*}
\]

2. \[
\begin{align*}
 x + y - z &= 0 \\
 3x - y &= -14 \\
 2x - 3y + 4z &= -13
\end{align*}
\]
Reusing Results

One major advantage of solving a system of equations using a matrix equation is that if your matrix of coefficients A stays the same, but your matrix B changes, you can reuse most of your work.

Example

Solve each of the following systems of equations using the results from the last part of the previous question.

1. \[
\begin{align*}
x + y - z &= 2 \\
3x - y &= 1 \\
2x - 3y + 4z &= 0
\end{align*}
\]

2. \[
\begin{align*}
x + y - z &= 0 \\
3x - y &= -14 \\
2x - 3y + 4z &= -13
\end{align*}
\]
Important Concepts

Things to Remember from Section 2-6

1. \(A^{-1}A = AA^{-1} = I_n \) for an \(n \times n \) matrix \(A \)

2. Find \(A^{-1} \) by reducing \([A \mid I_n]\) to \([I_n \mid A]\)

Important Concepts

Things to Remember from Section 2-6

1. $A^{-1}A = AA^{-1} = I_n$ for an $n \times n$ matrix A

2. Find A^{-1} by reducing $[A \mid I_n]$ to $[I_n \mid A]$

Important Concepts

Things to Remember from Section 2-6

1. \(A^{-1}A = AA^{-1} = I_n \) for an \(n \times n \) matrix \(A \)

2. Find \(A^{-1} \) by reducing \([A \mid I_n]\) to \([I_n \mid A]\)

Important Concepts

Things to Remember from Section 2-6

1. $A^{-1}A = AA^{-1} = I_n$ for an $n \times n$ matrix A

2. Find A^{-1} by reducing $[A \mid I_n]$ to $[I_n \mid A]$

Next time we will review for our third and final in class exam. It will be over the sections we covered from chapters 1 and 2.
Next time we will review for our third and final in class exam. It will be over the sections we covered from chapters 1 and 2.