Recall that in base ten, the digits to the right of the decimal point have the following values:

<table>
<thead>
<tr>
<th>Decimal Place</th>
<th>Name</th>
<th>Value - Fraction</th>
<th>Value - Exponent</th>
</tr>
</thead>
<tbody>
<tr>
<td>first</td>
<td>tenths</td>
<td>1/10</td>
<td>10^{-1}</td>
</tr>
<tr>
<td>second</td>
<td>hundredths</td>
<td>1/100</td>
<td>10^{-2}</td>
</tr>
<tr>
<td>third</td>
<td>thousandths</td>
<td>1/1000</td>
<td>10^{-3}</td>
</tr>
<tr>
<td>fourth</td>
<td>ten-thousandths</td>
<td>1/10000</td>
<td>10^{-4}</td>
</tr>
</tbody>
</table>

Using this information, answer the following questions.

1. What are the corresponding place values in the base two system?

2. What number is represented by each of the following?
 (a) 0.1_{two}
 (b) 10.11_{two}
 (c) 111.011_{two}

3. Write each of the following base ten numbers in base two.
 (a) 10.5
 (b) 0.75
 (c) 2.25
4. We can write numbers in base one-half if we use \(\frac{1}{2} \) as the base and the digits 0 and 1. For example, the numeral 101_{one-half} represents:

\[
1 \times \left(\frac{1}{2} \right)^2 + 0 \times \left(\frac{1}{2} \right)^1 + 1 \times \left(\frac{1}{2} \right)^0 = \frac{1}{4} + 0 + 1 = 1.25
\]

What number is represented by each of the following?
(a) 11_{one-half}

(b) 10.1_{one-half}

(c) 0.101_{one-half}

5. Write the first ten counting numbers base one-half.

6. How does the base one-half representation of a number relate to its base two representation?