Analytic Geometry and Calculus IV (MATH 283)
Winter Quarter, 2008

Time/Place: MTWF 8:00-8:50 a.m. KRH 345
Instructor: Jonathan Duncan (jonathan.duncan@wallawalla.edu)
Office: Kretchmar Hall 330, phone: 527-2097
Office Hours: 9:00 TR, 10:00 T, 11:00 W, 1:00 MWF or by appointment

Text: Calculus, 8th Edition,
Webpage: http://math.wallawalla.edu/courses/283/
Calculator: A graphing calculator with symbolic math capabilities, such as the TI-89.

In this course we will study differential and integral calculus of multi-variable functions, line and surface integrals, Green’s theorem, the divergence theorem, and Stokes’ theorem. We will cover chapters 13-15 in your text, in order. The deadline for withdrawing from the course is Tuesday, 19 February and the final will be on Wednesday, 19 March 2008.

Topics

1. Functions of Several Variables:
 introduction, limits, continuity, partial derivatives, differentials, chain rules, directional derivatives, gradients, tangent planes, normal lines, extrema, applications of extrema, lagrange multipliers
2. Multiple Integration:
 iterated integrals, area in the plane, double integrals and volume, change of variables: polar coordinates, center of mass, moments of inertia, surface area, triple integrals, triple integrals in cylindrical and spherical coordinates, change of variables: Jacobians
3. Vector Analysis:
 vector fields, line integrals, conservative vector fields, independence of path, Green’s theorem, parametric surfaces, surface integrals, divergence theorem, Stoke’s theorem

Objectives
Upon completion of this course, students will have

1. developed demonstrable understanding of the topics outlined above.
2. successfully engaged in mathematical thinking, reasoning, and problem solving.
3. become proficient in expressing clear and accurate solutions to mathematical problems in written form.

The following requirements encourage and measure the successful completion of these objectives.

Homework (O2,O3)
Mathematics is not a spectator sport. Daily assignments will be give, each due by 5:00 p.m. on the day of the next class period. These assignments should be considered the minimal amount of homework required to pass the course, and can be expected to take approximate two hours for every hour of lecture. Assignments which are more than one class day late will not be accepted. Your lowest two homework scores will be dropped at the end of the quarter. If you miss more than two assignments due to appropriate and verifiable reasons, additional homework scores may, at the discretion of your instructor, be dropped.
Please observe the following guidelines when preparing your homework. Papers which do not meet these criteria may be discounted or returned.

1. Use letter (8.5 × 11) sized paper with clean edges (not torn out of a notebook).
2. Multi-page assignments must be stapled or paper-clipped together.
3. Fold the assignment lengthwise like a book and write your name, the course number, and assignment number(s) on the front cover.
4. Use a pencil, write legibly, and organize your problems and solutions in a logical manner.

Exams (O1,O2)

There will be four exams during the course of the quarter, including the two-hour comprehensive final. The first three exam dates are subject to in-class change, and will be announced at least one week in advance. You may request alternative exam dates in advance for appropriate and verifiable reasons. The final exam may only be taken out of schedule after consultation with the Associate Academic Dean.

<table>
<thead>
<tr>
<th>Exam</th>
<th>Chapters</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>13</td>
<td>28 January</td>
</tr>
<tr>
<td>II</td>
<td>13 and 14</td>
<td>15 February</td>
</tr>
<tr>
<td>III</td>
<td>14 and 15</td>
<td>7 March</td>
</tr>
<tr>
<td>Final</td>
<td>13-15</td>
<td>Wednesday, 19 March 12:00 p.m.</td>
</tr>
</tbody>
</table>

Solution Write-up (O1)

When writing exams and homework solutions there are several things you should keep in mind. First, a solution is not simply an answer. A solution is a guide to understanding why the answer you give is correct. As such, it is not enough to supply a number or a formula. **You must show your work!** Second, your solution must communicate how you arrived at your answer. To help facilitate this communication, you should include short sentences along the way, explaining what you are doing to solve the problem. This will also help prompt you in case you forget what the next step in a particular solution should be. Finally, presentation is an important part of any communication. You are trying to “sell” your work to the reader. Make your solution neat and legible. It should flow nicely and be a joy to read!

Grades

Your final letter grade will be based on your quarter average as shown below. Your quarter average is made up of five scores: your homework average and four exam scores. Weights for each of these are given below. Appropriate (to your instructor) modifications of the final letter grades may be made in individual cases for progress, unusual circumstances, etc.

<table>
<thead>
<tr>
<th>Score Weights</th>
<th>Letter Grades (lowest percent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final 30%</td>
<td>B+ 89% C+ 78% D+ 64%</td>
</tr>
<tr>
<td>Exams I-III 3×18%</td>
<td>A 93% B 82% C 68% D 57% F 0%</td>
</tr>
<tr>
<td>Homework 16%</td>
<td>A- 91% B- 80% C- 66% D- 55%</td>
</tr>
</tbody>
</table>

All acts of dishonesty are unacceptable, including cheating, plagiarism, forgery, misrepresentation, falsification, and prohibited collaboration. Violation of academic integrity codes will result in disciplinary action. Collaboration on homework is encouraged, but be certain that the work you hand in is your own.

Disabilities

Students with a physical and/or learning disability who require accommodations should contact the instructor or Disability Support Services at 527-2366. This syllabus is available in alternative formats upon request.