MATH 312
Section 4.1: Higher Order Linear Differential Equations

Prof. Jonathan Duncan
Walla Walla College
Spring Quarter, 2007
Outline

1. Homogeneous Linear Differential Equations
 - Existence and Uniqueness
 - Boundary Value Problems
 - Homogeneous Differential Equations
 - Superposition Principle
 - Linear Independence

2. Non-homogeneous Linear Differential Equations
 - Solutions to Non-homogeneous Equations
 - Superposition Principle

3. Conclusion
We now expand our examination to solutions for higher order (≥ 2) differential equations. We start with linear DEs.

nth Order Linear IVPs

The initial value problem for an nth order differential equation asks us to solve

$$a_n(x) \frac{d^n y}{dx^n} + a_{n-1}(x) \frac{d^{n-1} y}{dx^{n-1}} + \cdots + a_1(x) \frac{dy}{dx} + a_0(x)y = g(x)$$

subject to the constraints

$$y(x_0) = y_0, \quad y'(x_0) = y_1, \quad \ldots, \quad y^{(n-1)}(x_0) = y_{n-1}$$

Note:

In an initial value problem, we must have information about y and its derivatives at the same point, x_0.
Existence/Uniqueness Theorem

We now have a different existence/uniqueness theorem.

Theorem 4.1

Let \(a_n(x), a_{n-1}(x), \ldots, a_0(x) \) and \(g(x) \) be continuous on an open interval \(I \), and let \(a_n(x) \neq 0 \) for every \(x \) in \(I \). Then, if \(x_0 \) is any point in this interval, a solution \(y(x) \) of the IVP below exists and is unique on \(I \).

\[
a_n(x) \frac{d^n y}{dx^n} + a_{n-1}(x) \frac{d^{n-1} y}{dx^{n-1}} + \cdots + a_1(x) \frac{dy}{dx} + a_0(x)y = g(x)
\]

subject to the constraints

\[
y(x_0) = y_0, \quad y'(x_0) = y_1, \quad \ldots, \quad y^{(n-1)}(x_0) = y_{n-1}
\]

Question:

How is this similar to the 1st order existence/uniqueness theorem?
Applying the Theorem

Apply this theorem to the following examples.

Example

Determine if there is a unique solution to the IVP

\[4xy'' + 3y'' + 7x^2y' + y = x \]

subject to

\[y(1) = 1, \ y'(1) = -1, \ y''(1) = 1 \]

Example

Show that \(y = C_1 + C_2 \cos x + C_3 \sin x \) is a solution to \(y''' + y' = 0 \) on the interval \((-\infty, \infty)\) and determine if there is a unique particular solution satisfying

\[y(\pi) = 0, \ y'(\pi) = 2, \ y''(\pi) = -1 \]
Definition of a BVP

You have probably noticed one of the drawbacks about an IVP is that we must know everything about the solution and its derivatives at a single point.

A boundary value problem (BVP) is one in which we solve

\[
 a_n(x) \frac{d^n y}{dx^n} + a_{n-1}(x) \frac{d^{n-1} y}{dx^{n-1}} + \cdots + a_1(x) \frac{dy}{dx} + a_0(x) y = g(x)
\]

subject to \(n - 1 \) conditions on \(y, y', y'', \ldots, y^{(n-1)} \).

These initial conditions are called boundary conditions. A solution \(y \) will satisfy the DE on some interval \(I \) containing the boundary condition points.
A BVP Example

Let’s consider an example boundary value problem.

Example

Consider the differential equation $x^2y'' - 5xy' + 8y = 24$ and the family of solutions $C_1x^2 + C_2x^4 + 3$. Determine if a member of the family can be found which satisfies the following boundary conditions.

1. $y(-1) = 0$, $y(1) = 4$
2. $y(-1) = 0$, $y(1) = 0$
3. $y(1) = 3$, $y(2) = 15$

Existence/Uniqueness

We do not have a nice existence uniqueness theorem for BVPs at this point.
Homogeneous Linear Differential Equations

Non-homogeneous Linear Differential Equations

Conclusion

Homogeneous Differential Equations

Definition of Homogeneity

Recall that a first order linear equation $\frac{dy}{dx} + P(x)y = 0$ was called homogeneous. We now extend this to higher order DEs.

Homogeneity

If the nth order linear differential equation below has $g(x) = 0$ we call the equation **homogeneous**. If $g(x) \neq 0$ the equation is **non-homogeneous** and has an associated homogeneous equation in which $g(x)$ does equal 0.

$$a_n(x)\frac{d^n y}{dx^n} + a_{n-1}(x)\frac{d^{n-1} y}{dx^{n-1}} + \cdots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$

Note:

Unless otherwise stated, we will assume from now on that in a general linear differential equation such as the one above:

- The coefficients $a_i(x)$ and $g(x)$ are continuous
- The leading coefficient $a_n(x) \neq 0$ for each x in the solution interval
Differential Operators

We now turn to a new way to represent differential equations.

Recall from calculus, that differentiation can be represented as:

\[f'(x) = \frac{df}{dx} = Df(x) \quad \text{and} \quad f^{(n)}(x) = \frac{d^n f}{dx^n} = D^n f(x) \]

Example

Use the linearity of the differential operator \(D \) to rewrite
\(D(C_1 f(x) + C_2 g(x)) \).

Representing a Linear DE

In general, we can represent an \(n \)th order differential equation as:

\[(a_n(x)D^n + a_{n-1}(x)D^{n-1} + \cdots + a_1(x)D + a_0(x))y = g(x) \]

\[L(y) = g(x) \]
Superposition Principle for Homogeneous DEs

We will begin to examine solutions to nth order linear DEs by seeing how solutions can be put together.

Superposition Principle for Homogeneous DEs

Let y_1, y_2, \ldots, y_n be solutions of the homogeneous nth order differential equation $L(y) = 0$ on an interval I. Then, the linear combination $y = C_1y_1 + C_2y_2 + \cdots + C_ky_k$ is a solution on I for arbitrary constants C_i.

Proof

As L is linear,

\[
L(C_1y_1 + C_2y_2 + \cdots + C_ky_k) = 0
\]
\[
C_1L(y_1) + C_2L(y_2) + \cdots + C_kL(y_k) = 0
\]
\[
C_1(0) + C_2(0) + \cdots + C_k(0) = 0
\]
To see how this works, consider the following example.

Example

Consider the differential equation $4y'' - 4y' + y = 0$. Verify that the functions $y_1 = e^{x/2}$ and $y_2 = xe^{x/2}$ are solutions to this differential equation on $(-\infty, \infty)$ and find two new solutions.

Note:

Although there are infinitely many solutions which can be constructed from this set, they all have the form of a linear combination of y_1 and y_2.
Linearly Independent Functions

It is now natural to consider linear independence.

Linearly Dependent Functions

A set of functions $f_1(x), f_2(x), \ldots, f_n(x)$ is **linearly dependent** on an interval I if there are constants C_1, C_2, \ldots, C_n not all zero such that

$$C_1f_1(x) + C_2f_2(x) + \cdots + C_nf_n(x) = 0$$

for all values of x in I. If a set of functions does not have this property, it is called **linearly dependent**.

Example

Determine if the following sets of functions are linearly independent or linearly independent on $(-\infty, \infty)$.

1. $f_1(x) = 4 + x$, $f_2(x) = 4 + |x|

2. $f_1(x) = x$, $f_2(x) = x^2$, $f_3(x) = 4x - 3x^2$
The Wronskian

It can be difficult to determine if a set of functions is linearly independent or dependent. To do this, we introduce a new tool.

Wronskian

Suppose each of the functions $f_1(x)$, $f_2(x)$, \ldots, $f_n(x)$ has at least $n - 1$ derivatives. Then, the determinant below is called the **Wronskian** of the functions.

$$W(f_1, f_2, \ldots, f_n) = \begin{vmatrix} f_1 & f_2 & \cdots & f_n \\ f'_1 & f'_2 & \cdots & f'_n \\ \vdots & \vdots & \ddots & \vdots \\ f_1^{(n-1)} & f_2^{(n-1)} & \cdots & f_n^{(n-1)} \end{vmatrix}$$

Criteria for Linear Independence

If y_1, y_2, \ldots, y_n are solutions to an nth order homogeneous equation $L(y) = 0$ on some interval I, then the set of solutions is linearly independent of I if and only if $W(y_1, y_2, \ldots, y_n) \neq 0$ for every $x \in I$.
A Fundamental Set of Solutions

At this point, we have not yet stated why we are interested in a linearly independent set of solutions, or indeed that one will even exist!

Fundamental Sets

Any set of n linearly independent solutions of the nth order homogeneous differential equation $L(y) = 0$ on an interval I is called a **fundamental set of solutions** on that interval.

Existence

There exists a fundamental set of solutions for the nth order homogeneous differential equation $L(y) = 0$ on an interval I.

Having a fundamental set is the key to solving a homogeneous differential equation.
Now, let’s see how we put this together to construct a solution.

The General Solution

If \(\{y_1, y_2, \ldots, y_n\} \) is a fundamental set of solutions of the \(n \)th order homogeneous differential equation \(L(y) = 0 \) on an interval \(I \), then the **general solution** of the equation on that interval is:

\[
y = C_1 y_1(x) + C_2 y_2(x) + \cdots + C_n y_n(x)
\]

Example

Given that \(x^3 \) and \(x^4 \) are both solutions to \(x^2 y'' - 6xy' + 12y = 0 \) on \((0, \infty) \), find the general solution.
Non-homogeneous Equations

We now turn our attention to non-homogeneous differential equations.

Particular Solution

Recall that a particular solution y_p is a function without parameters which solves the non-homogeneous differential equation $L(y_p) = g(x)$.

General Solution

Let y_p be any particular solution of the non-homogeneous nth order differential equation $L(y) = g(x)$ on some interval I, and let \{\(y_1, y_2, \ldots, y_n\)\} be a fundamental set of solutions to the associated homogeneous equation $L(y) = 0$. Then, the general solution to $L(y) = g(x)$ on I is given by:

$$y = C_1 y_1(x) + C_2 y_2(x) + \cdots + C_n y_n(x) + y_p$$
A Non-homogeneous Example

Consider the following example of this solution form.

Example

Verify that $x^{-\frac{1}{2}}$ and x^{-1} form a fundamental set of solutions to the differential equation $2x^2y'' + 5xy' + y = 0$ on $(0, \infty)$. Then, verify that $\frac{1}{15}x^2 - \frac{1}{6}x$ is a particular solution to $2x^2y'' + 5xy' + y = x^2 - x$ on the same interval. Finally, find the general solution to this second equation.

Note:

Remember to verify that $x^{-\frac{1}{2}}$ and x^{-1} are both solutions and that they are linearly independent.
Superpositioning for Non-homogeneous DEs

We have seen that any particular solution of a non-homogeneous equation can be written in terms of the general solution. What about in the homogeneous case?

Let $y_{p1}, y_{p2}, \ldots, y_{pk}$ be particular solutions of the non-homogeneous differential equations $L(y) = g_i(x)$. Then:

$$y_p(x) = y_{p1}(x) + y_{p2}(x) + \cdots + y_{pk}(x)$$

is a particular solution to the non-homogeneous equation

$$L(y) = g_1(x) + g_2(x) + \cdots + g_n(x)$$

Note:

This superposition principle is different in that we must change the differential equation to which our sum is a solution.
We end with an example of the superposition principle for non-homogeneous differential equations in action.

Example

Show that $y_{p1} = 3e^{2x}$ is a particular solution to $y'' - 6y' + 5y = -9e^{2x}$ on the interval $(-\infty, \infty)$.

Example

Show that $y_{p2} = x^2 + 3x$ is a particular solution to $y'' - 6y' + 5y = 5x^2 + 3x - 16$ on the interval $(-\infty, \infty)$.

Example

Use the examples above to find a particular solution to $y'' - 6y' + 5y = 5x^2 + 3x - 16 - 9e^{2x}$.
Important Concepts

Things to Remember from Section 4.1

1. Applying the Existence/Uniqueness Theorem for nth order linear DEs
2. Solving IVPs and BVPs
3. Writing homogeneous linear DEs using differential operators
4. Using the superposition principles
5. Verifying linear independence with the Wronskian
6. Verifying a fundamental set of solutions
7. Constructing general solutions