MATH 312
Section 7.5: Dirac Delta & 7.6: Systems of Equations

Prof. Jonathan Duncan

Walla Walla College

Spring Quarter, 2007
Outline

1. Dirac Delta Function
2. Systems of Differential Equations
3. Conclusions
In the real world, many forces act for just a short time. These are called **impulse** forces and can be modeled with the following family of unit impulse functions.

Unit Impulse Function

The unit impulse function is actually a family of piecewise defined functions given by:

\[
\delta_a(t - t_0) = \begin{cases}
0 & 0 \leq t < t_0 - a \\
\frac{1}{2a} & t_0 - a \leq t < t_0 + a \\
0 & t \geq t_0 + a
\end{cases}
\]
The Dirac Delta Function

The limit of these functions as \(a \) goes to zero would give us an instantaneous unit pulse function.

The Dirac delta function is defined by:

\[
\delta(t - t_0) = \lim_{a \to 0} \delta_a(t - t_0)
\]

Properties

The Dirac delta has the following properties, which lead one to realize that it is not really a function.

1. \[
\delta(t - t_0) = \begin{cases}
\infty & t = t_0 \\
0 & t \neq t_0
\end{cases}
\]
2. \[
\int_{-\infty}^{\infty} \delta(t - t_0) \, dt = 1
\]
The Laplace Transform of δ

Although not technically a function, we can find the Laplace transform of the δ.

Theorem 7.11

For $t_0 > 0$, $\mathcal{L}\{\delta(t - t_0)\} = e^{-st_0}$.

\[
\delta_a(t - t_0) = \frac{1}{2a} \left[\mathcal{U}(t - (t_0 - a)) - \mathcal{U}(t - (t_0 + a)) \right]
\]

\[
\mathcal{L}\{\delta_a(t - t_0)\} = e^{-st_0} \left(\frac{e^{sa} - e^{-sa}}{2sa} \right)
\]

\[
\mathcal{L}\{\delta(t - t_0)\} = \lim_{a \to 0} \mathcal{L}\{\delta_a(t - t_0)\} = e^{-st_0}
\]

Example

Solve the IVP $y'' + 2y' = \delta(t - 1)$.
Spring/Mass Example

One of the nice things about the Laplace transform is that it turns a differential equation into an algebraic equation. This allows us to solve systems of equations.

Example

In a coupled spring system, the position of the system is determined by the positions of each individual mass, x_1 and x_2. To find both x_1 and x_2 we need two differential equations as shown.

\[
m_1 \frac{d^2 x_1}{dx_1^2} = -kx_1 + k_2(x_2 - x_1)\]

\[
m_2 \frac{d^2 x_2}{dx_2^2} = -k_2(x_2 - x_1)\]
Another practical example in which we need a system of differential equations is in a circuit as shown below.

Example

A circuit may contain several loops, and the current flowing through these loops may be different. If we use differential equations to find that current, then we need a separate equation for each loop.

\[L \frac{di_2}{dt} + L \frac{di_3}{dt} + R_1 i_2 = E(t) \]

\[-R_1 \frac{di_2}{dt} + R_2 \frac{di_3}{dt} + \frac{1}{C} i_3 = 0 \]
Finally, we will actually apply the Laplace transform to solve the following problem.

Example

Solve the initial value system of differential equations shown below.

\[
\begin{align*}
\frac{dx}{dt} - 4x + \frac{d^3 y}{dt^2} &= 6 \sin t \\
\frac{dx}{dt} + 2x - 2 \frac{d^3 y}{dt^3} &= 0
\end{align*}
\]

subject to:

\[x(0) = 0, \quad y(0) = 0 \quad y'(0) = 0, \quad y''(0) = 0\]
Important Concepts

Things to Remember from Section 7.5 and 7.6

1. Definition and applications of the Dirac Delta function

2. Laplace transforms of the Dirac Delta function

3. Setting-up and solving systems of differential equations including:
 - Spring/Mass Systems
 - Circuits
 - Initial Value Problems