1. Let G be an abelian group, $H \leq G$.
 (a) Prove that G/H is an abelian group.
 (b) Show that the converse does not hold. That is, find a group G and a normal subgroup H such that G/H is abelian but G is not.

2. Problem number 13 on page 152 of your text.

3. Let G be a finite group, $H \triangleleft G$. Show that if $a \in G$ is such that aH has order n in G/H, then there is an element in G with order n.

4. Problem number 30 on page 153 of your text.